
Introduction to formal methods

Dr. Hale
University of Nebraska at Omaha

Information Security and Policy– Lecture 7

Today’s topics:
Introduction to formal methods

What are formal methods?

Why uses formal methods?

Logic and Set theory Primer

Propositional logic

First order Logic

Set theory

Formally Modelling Policy as Constraints

Protection States

Policy mechanisms as logic constraints

Intro

Up until now…

Intro

Policy has meant high level natural language.

Policy

ProcedureGuideline

Law /

Regulation

Standard

Security

Controls

Internal External

Intro

Intro

I. UNO STUDENT PARKING POLICY

A. STUDENT: The term ‘student’ refers to anyone who is currently enrolled (registered) for classes held on or off the UNO Campus, either part

or full-time, whether or not it leads to an academic degree.

B. Individuals who work for the University as student workers and are registered for classes are considered students.

C. Students desiring to park at the UNO Dodge, Pacific or Center locations must purchase and display a valid parking permit.

D. Student parking areas are designated by parking lot signs red in color. Specific student lots are as follows: Lots A, D, F, G, H, K, N, T, V, X, St.

Margaret Mary’s Church lot (West area, East/West Drive South of the church unless otherwise posted), First Christian Church lot (West area) at the

Dodge campus; Lots 2, 5, 8, 9 (South portion) and 14 at the Pacific campus and Lot 20 at the Center campus. Permits can also be purchased for the

East and West Garage, check on availability.

E. Students are restricted to student lots from 7 a.m. to 2:30 p.m., Monday through Friday. After 2:30 p.m., vehicles bearing valid parking permits

may park in Student Lots and designated Faculty/Staff Lots as follows: G, H, M, S , X at the Dodge campus, and Lot 6 at the Pacific campus.

F. After 7 p.m., vehicles bearing valid parking permits may park in designated Faculty/Staff Lots R and W at the Dodge campus, and Lot 4 at the

Pacific campus.

G. Students with “Night Only” parking permits may park on campus after 2:30 p.m. in the lots specified above. If you need to park on campus

before 2:30 p.m., you may park in the Crossroads Mall Parking Garage and take the free shuttle bus which runs from 7 a.m. until 6 p.m., or stop by

Parking Services and obtain a Temporary Parking Permit for one or two consecutive days to allow your vehicle on campus prior to 2:30 p.m. Only

four free temporary permits issued per academic year.

H. Graduate Teaching Assistants may apply for G.T.A. parking privileges. G.T.A. permits are restricted to Faculty/Staff lots only.

I. Parking is also available in the Crossroads Mall Parking Garage from 7 a.m. - 7 p.m. when classes are in session during fall and spring semesters.

No parking permit is required to park at the Crossroads Mall Parking Garage. (See Crossroads Mall Parking Garage for more details).

Policy Natural Language Verbosity

Intro

Controls and mitigations have also been natural language.

NIST: AU-12.c: Audit Generation
The information system generates audit records

for the events defined in AU-2.d with the content

defined in AU-3.
W
h
a
t

d
o

s
e
c
u
r
i
t
y

c
o
n
t
r
o
l
s

l
o
o
k

l
i
k
e
?

AU-3: Content of Audit Records
The information system generates audit records containing information that

establishes what type of event occurred, when the event occurred, where the

event occurred, the source of the event, the outcome of the event, and the

identity of any individuals or subjects associated with the event.

AU-2.d: Audit Events
The organization determines that the following events are to be audited

within the information system: [Assignment: organization-defined audited events

(the subset of the auditable events defined in AU-2 a.) along with the frequency of

(or situation requiring) auditing for each identified event].

Intro

W
h
a
t

d
o

s
e
c
u
r
i
t
y

c
o
n
t
r
o
l
s

l
o
o
k

l
i
k
e
?

CC: FAU_GEN.1.1(c) Audit Data Generation
The TSF shall be able to generate an audit record of the following

auditable events [assignment: other specifically defined auditable events]

Intro

Threat

Launched

Threat

Launched

Threat

Launched

Result:

Prevented

Detective

Result:

Alert

Preventative

Result:

Restoration

or system

adaptation

Corrective

Optional trigger

Intro

Intro

These are ideas and words that may be

ambiguous or open to interpretation.

Intro

How to make policy unambiguous?

Intro

Solution:

+ -

Intro

Policy Expression

• Natural Language

– Imprecise but easy to express

– Interpretation may vary due to ambiguity

– e.g. All cars on campus should be in their designated lots

• Mathematically / Logically

– Precise but difficult to express

– Interpretation, once formalized, is stable and unambiguous

– Secure (allowed) states

• For all cars with a UNO sticker, car is parked in lot listed on sticker

• For all cars without a UNO sticker, car is parked in visitor space in correct lots or contains temporary permit

– Non-secure (disallowed) states

• There exists a car parked in grass or on street

• There exists a car with a UNO sticker that is in lot not listed on sticker

• There exists a car without a sticker that is not in visitor space

– What if I’m going to UNL with a UNO campus sticker, where do I park?

• Policy: All cars with UNO sticker can park in corresponding UNL spots. Permits will be honored.

Logic Primer

Before jumping into formal policy expression…

Logic Primer

Lets cover some notational basics.

Some material from notes by

Andreas Geyer-Schulz, Chuck Dyer, and

UMBC CS671

Logic Primer

Propositional Logic

• A simple language useful for showing key ideas and definitions

• Logical constants: true, false

• Propositional symbols: P, Q, S, ... (atomic sentences)

• Wrapping parentheses: (…)

• Sentences are combined by connectives:

 ...and [conjunction]

 ...or [disjunction]

⇒...implies [implication / conditional]

..is equivalent [biconditional]

 ...not [negation]

• Literal: atomic sentence or negated atomic sentence

Logic Primer

Propositional Logic

• User defines a set of propositional symbols, like P and Q.

• User defines the semantics of each propositional symbol:

– P means “It is cold”

– Q means “It is raining”

– R means “It is snowing”

• A sentence (well formed formula) is defined as follows:

– A symbol is a sentence

– If S is a sentence, then S is a sentence

– If S is a sentence, then (S) is a sentence

– If S and T are sentences, then (S T), (S T), (S T), and (S ↔ T) are sentences

– Any sentence results from a finite number of applications of the above rules

Logic Primer

Propositional Logic sentence examples

If it is cold and raining, then its snowing

P Q ⇒ R

If it is snowing, then it is cold

R ⇒ P

If it is snowing, then it is raining.

R ⇒ Q

it is cold and raining if and only if (iff) it is snowing

P Q R

Logic Primer

A BNF grammar of sentences in propositional logic

S := <Sentence> ;

<Sentence> := <AtomicSentence> | <ComplexSentence> ;

<AtomicSentence> := "TRUE" | "FALSE" | <Atom>

<ComplexSentence> := (<Sentence>) |

<Sentence> <Connective> <Sentence> |

"NOT" <Sentence> ;

<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT" ;

<Atom> := “A” | “B” |…

Logic Primer

Propositional Logic terms

• A sentence can be evaluated to determine its truth value

• A tautology is a sentence that is always true (P P)

• A contradiction is a sentence that is always false (P P)

• A sentence can entail another sentence

• written P |= Q.

• Entailment means that if P is True, then so is Q.

• A truth table is a list of possible truth values for a statement

Logic Primer

Propositional Logic truth tables

The five logical connectives:

Example complex sentence:

P Q P P Q P Q P ⇒Q P Q

False False True False False True True

False True True False True True False

True False False False True False False

True True False True True True True

P H P H (P H) H ((P H) H) ⇒ P

False False False False True

False True True False True

True False True True True

True True True False True

Logic Primer

Propositional Logic Venn diagrams of truth

• Logical inference is used to create new sentences that logically
follow from a given set of predicate calculus sentences (KB).

• An inference rule is sound if every sentence X produced by an
inference rule operating on a KB logically follows from the KB.
(That is, the inference rule does not create any contradictions)

• An inference rule is complete if it is able to produce every
expression that logically follows from (is entailed by) the KB. (Note
the analogy to complete search algorithms.)

Logic Primer

Propositional Logic Inference Rules

• Here are some examples of sound rules of inference

– A rule is sound if its conclusion is true whenever the premise is true

• Each can be shown to be sound using a truth table
RULE PREMISE CONCLUSION

Modus Ponens A, A B B

And Introduction A, B A B

And Elimination A B A

Double Negation A A

Unit Resolution A B, B A

Resolution A B, B C A C

Logic Primer

Propositional Logic Inference Rules: Soundness

Logic Primer

Propositional Logic Proving things

• A proof is a sequence of sentences, where each sentence is either a premise or a

sentence derived from earlier sentences in the proof by one of the rules of

inference.

• The last sentence is the theorem (also called goal or query) that we want to prove.

• Example “morning problem”

1 P Premise “It is early”

2 PQ Premise “If it is early, I’m tired”

3 Q Modus Ponens (1, 2) “I’m tired”

4 (PQ) R Premise “If it’s early and I’m tired, I want to nap”

5 PQ And Introduction(1, 3) “It is early and I’m tired”

6 R Modus Ponens(4, 5) “I want to nap”

Logic Primer

Propositional logic is … weak.

Logic Primer

Propositional Logic Problems

• Hard to make statements about the properties of individual

instances

– “Class is on Tuesday and Thursday”

– “Today is Thursday”

– “Class is today”

– how to represent this in PL?

• Generalizations, patterns, regularities can’t easily be represented

– “all triangles have 3 sides”

– “There is an exception to every rule”

– How to represent this in PL?

Logic Primer

Introducing: First Order Logic

Logic Primer

First order predicate Logic

• Operate on sets in different domains

• Involve Quantifiers

• Can operate on all propositional logic symbols and any

truthy functions (aka predicates)

x > y

x = y

x < y

Logic Primer

First order Logic: Predicates

Definition:

Predicates are truthy propositions that evaluate to truth values given some

functional input.

Example:

P(x, y) := x + y = 0

x = 1, y = -1 : P(x, y) is true

x = 1, y = 1 : P(x, y) is false

Logic Primer

Sets

Definition:

A set is a mathematical construct that collects distinct objects.

Common sets include:

Z: the set of all integers {…, -2, -1, 0, 1, 2, …}

N: the set of all natural numbers {0, 1, 2, …}

R: the set of real numbers { -∞,…,0,…0.4132425236…∞}

Sets can be nearly anything

classDays : {Tues, Thurs}

Each item in a set is unique

Logic Primer

Set notation and operators you may use in this class

• brackets: {…}

– contain items of a set

• Element of:

– denotes that an item is in a set e.g. a {a,b}

• Not element of:

– means the opposite e.g. t {a,b}

• Empty set:

– denotes a set with nothing in it e.g. {} =

• Set subtraction: A – B

– operator that removes items in B from A

– e.g. A = {a, t}, B = {t} A – B = {a}

Logic Primer

Set notation and operators you may use in this class

• Set intersection: A B

– an operator that collects only the items that are in both sets

– e.g. A B = {t}, where A = {a, t} and B = {b, t}

• Set Union: A B

– opposite operator of intersection, combines all unique items from two sets

– e.g. A B = {a, b, t}, where A = {a, t} and B = {b, t}

• Subset: A B

– indicates that one set is entirely present in another

– e.g. A B where A = {b, t} and B = {b, t}

• Proper subset: A B

– subset plus one element (or more) of B is not in A

– e.g. A B where A = {t} and B = {b, t}

• Not a (proper) subset: A B

– something in a is not in b

Logic Primer

Quantifiers

Definition:

Quantifiers are a type of notation that denote a set of elements from a

domain (i.e. a set).

They come in two forms: Universal and Existential

Logic Primer

Universal Quantifier

Definition:

The universal quantifier, given by the symbol (read as “For All”) indicates all items

in a set.

Logical statements:

<vars> <Domain>, <statement> or <vars> <Domain> : <statement>

e.g. x Z, x x2 or x Z : x x2

read as “for all x in Z, x is less than or equal to x squared”

evaluates to true if the statement evaluates to true for all items.

You may see me or others write using Set builder notation

{ <vars> : <statement on vars> } or {<vars> : <statement on vars> }

e.g. { x : x x2 } or { x : x x2 } creates a set of all x where x x2 is true.

Logic Primer

Existential Quantifier

Definition:

The existential quantifier, given by the symbol (read “There Exists”)

indicates a single item in a set.

Logical statements:

 <vars> <Domain>, <statement> or <vars> <Domain> :

<statement>

e.g. x Z, x x2 or x Z : x x2

“there exists x in Z such that x is less than or equal to x squared”

evaluates to true if the statement evaluates to true for at least one item.

Logic Primer

Quantifier Examples

• Quantifiers can be part of logic statements

• “Everyone loves snow”

– ∀x ∈ P : lovesSnow(x)

• “Noone loves snow”

– ∀x ∈ P : lovesSnow(x)

• “Someone loves snow”

– ∃x ∈ P : lovesSnow(x)

• “At least someone doesn’t love snow”

– ∃x ∈ P : lovesSnow(x)

Logic Primer

Quantifier Negation

• What happens when you negate a quantifier?

– e.g. ∀x P(x)

• Apply DeDorgan’s Law

– 19th century British mathematician

• Law states:

– ∀x P(x) ∃x P(x)

– or

– ∃ x P(x) ∀ x P(x)

Logic Primer

Quantifier Negation Examples

• “Not Everyone loves snow”

 ∀x ∈ P : lovesSnow(x)

 ∃x ∈ P lovesSnow(x)

(There exists at least one person that doesn’t love snow)

• “Noone loves snow”

– ∃x ∈ P : lovesSnow(x)

 ∀x ∈ P : lovesSnow(x)

(There exists no person that loves snow)

Logic Primer

Wrap-up: Some misc. rules

• Quantifiers can be chained on the same statement or can be nested

– “There is cure that cures every disease”

– e.g. ∃ c ∈ Cures, ∀d ∈ Diseases : cure(c, d)

– or “Every disease has a cure”

– e.g. ∀d ∈ Diseases, ∃ c ∈ Cures : cure(c, d)

• Order of quantifiers matters

– the two statements above mean very different things

– changing the order affects the meaning

• Order doesn’t matter for the same type of quantifier (e.g. ∃∃ or ∀∀)

– e.g. a disease has a cure = a cure exists for a disease

– ∃ c ∈ Cures, ∃ d ∈ Diseases : cure(c, d)

– all diseases are cured by everything = all cures cure everything

– ∀ c ∈ Cures, ∀ d ∈ Diseases : cure(c, d)

Logic Primer

So that was a lot of “basics”

Formally Modelling Policy
Portions of Material from

Rose Gamble – University of Tulsa

Time to dig in.

• Policies (ideally)
– Unambiguously partition system states into secure and nonsecure

– Correctly capture security requirements

– Can be enforced

• Mechanisms (ideally)
– Enforce policy and prevent non-secure states

– Do not conflict with other mechanisms enforcing other policies

– Implemented, maintained, and administered correctly

• This is where the numerous documents are used
– How to define a policy

– What standard mechanisms are used for each policy property enforcement

– How a larger mechanism is formed

– What global compliance issues policies must abide by

Formally Modelling Policy

Formal Policy Assumptions

• Subset of system state that deals with protection

• Let P be all possible states. Let Q be secure states. Let s be a system state. And Let R
be the set of reachable states
– If s is in P - Q, then s is a non-secure state.

– For a secure system, all system states, s, must be in Q, i.e. ∀s ∈ P: s ∈ Q.

• Security policies characterize those s in Q (by defining what Q is)

• Security mechanisms prevent a state s in P-Q from being reached (the set R
of reachable states) through some unauthorized transition
– R Q is a secure system

– R = Q is a precise system

• The result of transforming an authorized state with an allowed transition
should always be an authorized state

• Following an authorization scheme – set of rules that direct the transitions

Formally Modelling Policy

Formal Policy Protection States

Secure system precise broad

R - set of reachable states

by the protection mechanisms,

where R P

Q - set of secure states

defined by the policy,

where Q P

set of all possible states, P

R Q R = Q r R | r Q

• All reachable states are

in the set of secure

states

• There are secure states

that the system cannot

reach

• All reachable states are

secure states which are

all reachable

• Some reachable states are

not secure making this a

non-secure system

Formally Modelling Policy

Venn Diagrams of Enforcement Mechanisms

• s1 – s9 are all possible states (P)

• s1 – s5 are secure states (Q)

• A mechanism is needed to disallow

transitions from s1 – s5 to s6 – s9

i.e. s6 – s9 should not be in R

s2

s4

s3

s7

s1

s6

s5

s8

s9

Formally Modelling Policy

Example states

• Confidentiality

– Information is confidential with respect to some entity set if no member of the set can obtain the

information

– Top secret documents cannot be viewed by those with a secret clearance, e.g ∀ p ∈ Secret, ∀ d ∈ TSDocs :

read (p, d)

• Integrity

– Information has integrity if it is not modified by members of unauthorized sets and authorized modifications

are logged appropriately

– Data integrity (conveyance and storage) –

∃ d ∈ Docs, ∀p ∈ Users : modify(p, d) authorized(p, d) (d, p, “modify”) auditLog

• Availability

– Information is available with respect to some entity set if all members of the set can access the information

• Access is granted or not - traditional

• Access may be associated with a response time – quality of service level agreement

– ∃ obj ∈ Objects, ∀ p ∈ Users : “read” ∈ A[p, obj]

Formally Modelling Policy

Security Objectives as logic statements

Prove that the information system can be trusted

• Proof has no errors
– Math can be done incorrectly manually

– Bugs in automated theorem provers

• Preconditions hold in environment in which S is to be used
– Stated as local, shared, variables or constants

– Environment must be equivalent

• S transformed into executable S whose actions follow source code

• Hardware executes S as intended

Assumptions play a major role and must be understood and made explicit

Formally Modelling Policy

Assumptions in the use of Formal Methods

• Define allowable state transitions

• Mechanisms must be clear on how they allow/deny the

state transition so that its output doesn’t provide any

information it shouldn’t

– Could create a covert channel

• Communication path not designed for communication

Formally Modelling Policy

Security Mechanisms must be precise

Common

Formally Modelling Policy

Simple (Phyiscal Covert Channel)

Holographic

(10 micrometers thicker)

=> Weigh booster packs and get more foil cards

Formally Modelling Policy

Simple (Phyiscal Covert Channel)

Formally Modelling Policy

Simple Auth Example

Inputs name, password => output Good or Bad

If name invalid, immediately print Bad; else access database

Problem: time output of Bad outputs, can allow an attacker to determine

if name valid. This means timing can be a covert channel

• Mechanisms must be clear on how they allow/deny the state transition so that

its output doesn’t provide any information it shouldn’t

• For a program and security policy, there exists a precise, security mechanism

that minimizes the number of denials to legitimate actions

• There is no effective procedure to determine a maximally precise, security

mechanism for any policy and program.

• Good policies attempt to limit covert channels through clear and

effective mechanisms

Formally Modelling Policy

Mechanisms and Covert Channels

Formally Modelling Policy

I. STUDENT PARKING POLICY

A. STUDENT: The term ‘student’ refers to anyone who is currently enrolled (registered) for classes held on or off the UNO Campus, either part

or full-time, whether or not it leads to an academic degree.

B. Individuals who work for the University as student workers and are registered for classes are considered students.

C. Students desiring to park at the UNO Dodge, Pacific or Center locations must purchase and display a valid parking permit.

D. Student parking areas are designated by parking lot signs red in color. Specific student lots are as follows: Lots A, D, F, G, H, K, N, T, V, X, St.

Margaret Mary’s Church lot (West area, East/West Drive South of the church unless otherwise posted), First Christian Church lot (West area) at the

Dodge campus; Lots 2, 5, 8, 9 (South portion) and 14 at the Pacific campus and Lot 20 at the Center campus. Permits can also be purchased for the

East and West Garage, check on availability.

E. Students are restricted to student lots from 7 a.m. to 2:30 p.m., Monday through Friday. After 2:30 p.m., vehicles bearing valid parking permits

may park in Student Lots and designated Faculty/Staff Lots as follows: G, H, M, S , X at the Dodge campus, and Lot 6 at the Pacific campus.

F. After 7 p.m., vehicles bearing valid parking permits may park in designated Faculty/Staff Lots R and W at the Dodge campus, and Lot 4 at the

Pacific campus.

G. Students with “Night Only” parking permits may park on campus after 2:30 p.m. in the lots specified above. If you need to park on campus

before 2:30 p.m., you may park in the Crossroads Mall Parking Garage and take the free shuttle bus which runs from 7 a.m. until 6 p.m., or stop by

Parking Services and obtain a Temporary Parking Permit for one or two consecutive days to allow your vehicle on campus prior to 2:30 p.m. Only

four free temporary permits issued per academic year.

H. Graduate Teaching Assistants may apply for G.T.A. parking privileges. G.T.A. permits are restricted to Faculty/Staff lots only.

I. Parking is also available in the Crossroads Mall Parking Garage from 7 a.m. - 7 p.m. when classes are in session during fall and spring semesters.

No parking permit is required to park at the Crossroads Mall Parking Garage. (See Crossroads Mall Parking Garage for more details).

Map our student parking policy

I. STUDENT PARKING POLICY

A. STUDENT: The term ‘student’ refers to anyone who is currently enrolled (registered) for classes held on or off the UNO Campus, either part

or full-time, whether or not it leads to an academic degree.

..

P := all possible persons

S := students

∀p ∈ P, isStudent(p)isRegistered(p) p ∈ S

Map our student parking policy

Formally Modelling Policy

I. STUDENT PARKING POLICY

B. Individuals who work for the University as student workers and are registered for classes are considered students.

..

∀p ∈ P, isStudentWorker(p) isRegistered(p) ⇒ isStudent(p) p ∈ S

(from this we know the policy is redundant, since isStudent(p)isRegistered(p) is established by A)

Example: Map our student parking policy

Formally Modelling Policy

I. STUDENT PARKING POLICY

C. Students desiring to park at the UNO Dodge, Pacific or Center locations must purchase and display a valid parking permit.

DesignatedAreas := {Dodge, Pacific, Center}

∀x ∈ DesignatedAreas, s ∈ S, park(s, x) hasPermit(s) displaysPermit(s)

Example: Map our student parking policy

Formally Modelling Policy

I. STUDENT PARKING POLICY

D. Student parking areas are designated by parking lot signs red in color. Specific student lots are as follows: Lots A, D, F, G, H, K, N, T, V, X, St.

Margaret Mary’s Church lot (West area, East/West Drive South of the church unless otherwise posted), First Christian Church lot (West area) at the

Dodge campus; Lots 2, 5, 8, 9 (South portion) and 14 at the Pacific campus and Lot 20 at the Center campus. Permits can also be purchased for the

East and West Garage, check on availability.

…

studentLotsDodge := {A, D, F, G, H, K, N, T, V, X, St. Margaret Mary’s Church lot (West area, East/West Drive South of the church unless

otherwise posted), First Christian Church lot (West area)}

studentLotsPacific := {2, 5, 8, 9(south portion), 14}

studentLotsCenter := {20}

specialLots := {East Garage, West Garage} OR {East/West} - this is an ambiguity in the policy

studentLots = studentLotsDodge studentLotsPacific studentLotsCenter

studentLots campusLots

Example: Map our student parking policy

Formally Modelling Policy

I. STUDENT PARKING POLICY

E. Students are restricted to student lots from 7 a.m. to 2:30 p.m., Monday through Friday. After 2:30 p.m., vehicles bearing valid parking permits

may park in Student Lots and designated Faculty/Staff Lots as follows: G, H, M, S , X at the Dodge campus, and Lot 6 at the Pacific campus.

…

facultyLots := {G, H, M, S, X, 6}

∀t ∈ Time, d ∈ Weekdays, s ∈ S, l ∈ campusLots, park(s, l)

(t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l ∈ studentLots)

(t ∈ {2:30pm,…7am} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots)

Example: Map our student parking policy

Formally Modelling Policy

I. STUDENT PARKING POLICY

F. After 7 p.m., vehicles bearing valid parking permits may park in designated Faculty/Staff Lots R and W at the Dodge campus, and Lot 4 at the

Pacific campus.

facultyLotsNight := {R, W, 4} or {R, W, 4} facultyLots ? – another ambiguity

∀t ∈ Time, d ∈ Weekdays, s ∈ S, l ∈ campusLots, park(s, l)

(t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l ∈ studentLots)

(t ∈ {2:30pm,…7pm} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots)

(t ∈ {7pm,…,7am} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots facultyLotsNight)

Example: Map our student parking policy

Formally Modelling Policy

I. STUDENT PARKING POLICY

G. Students with “Night Only” parking permits may park on campus after 2:30 p.m. in the lots specified above. If you need to park on campus

before 2:30 p.m., you may park in the Crossroads Mall Parking Garage and take the free shuttle bus which runs from 7 a.m. until 6 p.m., or stop by

Parking Services and obtain a Temporary Parking Permit for one or two consecutive days to allow your vehicle on campus prior to 2:30 p.m. Only

four free temporary permits issued per academic year.

…

changes previous statements by adding a permit type check adds new night student constraint and…

maxTemporaryPermits = 4/yr

∀t ∈ Time, d ∈ Weekdays, s ∈ S, l ∈ campusLots, park(s, l)

((permitType(s) = “normal” hasTemporaryPass(s)) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l ∈ studentLots)

((permitType(s) = “night only”) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l = “Crossroads”)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {2:30pm,…7pm} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {7pm,…,7am} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots

facultyLotsNight)

Example: Map our student parking policy

Formally Modelling Policy

I. STUDENT PARKING POLICY

H. Graduate Teaching Assistants may apply for G.T.A. parking privileges. G.T.A. permits are restricted to Faculty/Staff lots only.

…

GTA S

∀t ∈ Time, d ∈ Weekdays, s ∈ S, l ∈ campusLots, park(s, l)

((permitType(s) = “normal” hasTemporaryPass(s)) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l ∈ studentLots)

((permitType(s) = “night only”) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l = “Crossroads”)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {2:30pm,…7pm} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {7pm,…,7am} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots

facultyLotsNight)

(permitType(s) = GTA l ∈ facultyLots)

Example: Map our student parking policy

Formally Modelling Policy

I. STUDENT PARKING POLICY

I. Parking is also available in the Crossroads Mall Parking Garage from 7 a.m. - 7 p.m. when classes are in session during fall and spring semesters.

No parking permit is required to park at the Crossroads Mall Parking Garage. (See Crossroads Mall Parking Garage for more details).

∀t ∈ Time, d ∈ Weekdays, s ∈ S, l ∈ campusLots, park(s, l)

((permitType(s) = “normal” hasTemporaryPass(s)) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l ∈ studentLots)

((permitType(s) = “night only”) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l = “Crossroads”)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {2:30pm,…7pm} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {7pm,…,7am} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots

facultyLotsNight)

(permitType(s) = GTA l ∈ facultyLots)

(l = “Crossroads” t ∈ {7am,…,7pm})

going to ignore the “fall and spring” part

Example: Map our student parking policy

Formally Modelling Policy

I. STUDENT PARKING POLICY (formalized)

P := all possible persons

S := students

∀p ∈ P, isStudent(p)isRegistered(p) p ∈ S

DesignatedAreas := {Dodge, Pacific, Center}

∀x ∈ DesignatedAreas, s ∈ S, park(s, x) hasPermit(s) displaysPermit(s)

studentLotsDodge := {A, D, F, G, H, K, N, T, V, X, St. Margaret Mary’s Church lot (West area, East/West Drive South of the church unless

otherwise posted), First Christian Church lot (West area)}

studentLotsPacific := {2, 5, 8, 9(south portion), 14}

studentLotsCenter := {20}

specialLots := {East Garage, West Garage} OR {East/West} - this is an ambiguity in the policy

studentLots = studentLotsDodge studentLotsPacific studentLotsCenter

studentLots campusLots

facultyLots := {G, H, M, S, X, 6}

facultyLotsNight := {R, W, 4} or {R, W, 4} facultyLots

maxTemporaryPermits = 4/yr

GTA S

∀t ∈ Time, d ∈ Weekdays, s ∈ S, l ∈ campusLots, park(s, l)

((permitType(s) = “normal” hasTemporaryPass(s)) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l ∈ studentLots)

((permitType(s) = “night only”) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l = “Crossroads”)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {2:30pm,…7pm} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {7pm,…,7am} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots

facultyLotsNight)

(permitType(s) = GTA l ∈ facultyLots)

(l = “Crossroads” t ∈ {7am,…,7pm})

Example: resolve conflicts, eliminate redundancy

Formally Modelling Policy

I. STUDENT PARKING POLICY (formalized)

P := all possible persons

S := students

∀p ∈ P, isStudent(p)isRegistered(p) p ∈ S

studentLotsDodge := {A, D, F, G, H, K, N, T, V, X, St. Margaret Mary’s Church lot (West area, East/West Drive South of the church unless

otherwise posted), First Christian Church lot (West area)}

studentLotsPacific := {2, 5, 8, 9(south portion), 14}

studentLotsCenter := {20}

specialLots := {East Garage, West Garage}

studentLots = studentLotsDodge studentLotsPacific studentLotsCenter

studentLots campusLots

facultyLots := {G, H, M, S, X, 6}

facultyLotsNight := {R, W, 4} or {R, W, 4} facultyLots

maxTemporaryPermits = 4/yr

GTA S

∀t ∈ Time, d ∈ Weekdays, s ∈ S, l ∈ campusLots, park(s, l)

((permitType(s) = “normal” hasTemporaryPass(s)) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l ∈ studentLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {2:30pm,…7pm} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {7pm,…,7am} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots

facultyLotsNight)

(permitType(s) = GTA l ∈ facultyLots)

(l = “Crossroads” t ∈ {7am,…,7pm})

Example: Final result – No ambiguity

Formally Modelling Policy

Formally Modelling Policy

Notice, we can now state what policy violations look like.

Simply negate the policy statement

I. STUDENT PARKING POLICY Violation cases

[∀t ∈ Time, d ∈ Weekdays, s ∈ S, l ∈ campusLots, park(s, l)

((permitType(s) = “normal” hasTemporaryPass(s)) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l ∈ studentLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {2:30pm,…7pm} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {7pm,…,7am} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots

facultyLotsNight)

(permitType(s) = GTA ⇒ l ∈ facultyLots)

(l = “Crossroads” t ∈ {7am,…,7pm})]

Example: Final result – violation enumeration

Formally Modelling Policy

I. STUDENT PARKING POLICY Violation cases

∃ t ∈ Time, d ∈ Weekdays, s ∈ S, l ∈ campusLots, [park(s, l)

((permitType(s) = “normal” hasTemporaryPass(s)) t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} l ∈ studentLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {2:30pm,…7pm} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots)

(permitType(s) ∈ {“normal”, “night only”} t ∈ {7pm,…,7am} d ∈ {M, T, W, Th, F} l ∈ studentLots facultyLots

facultyLotsNight)

(permitType(s) = GTA l ∈ facultyLots)

(l = “Crossroads” t ∈ {7am,…,7pm})]

can distribute the negation further following De Morgan’s laws… its nice this way to say “find me a t, d, s, l such that these conditions aren’t met

e.g.

permitType(s) = “night only” t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} and l ∈ studentLots

[night student parking in the day]

permitType(s) = “normal” t ∈ {7am,…,2:30pm} d ∈ {M, T, W, Th, F} and l ∈ facultyLots

[student parking in faculty lots at an unacceptable time]

Example: Final result – violation enumeration

Formally Modelling Policy

Formally Modelling Policy

Despite sounding hard – policies stated this way can be enumerated by a

machine automatically.

R
e
a
d
i
n
g

Optional Reading:

Using First-Order Logic to Reason about Policies

Joseph Y. Halpern and Vicky Weissman Cornell University

http://arxiv.org/pdf/cs/0601034.pdf

http://arxiv.org/pdf/cs/0601034.pdf

H
o
m
e
w
o
r
k

Work on Project

Questions?

Matt Hale, PhD
University of Nebraska at Omaha

Interdisciplinary Informatics

mlhale@unomaha.edu

Twitter: @mlhale_

All else © 2014-2016 Matthew L. Hale

Some material © 2015 Rose Gamble – University of Tulsa

Some material © Andreas Geyer-Schulz, Chuck Dyer, and UMBC CS671

