
Access Control
Policy Composition, XACML, and Evaluation Metrics – oh my

Dr. Hale
University of Nebraska at Omaha
Information Security and Policy– Lecture 8 & 9

Today’s topics:
Access control basics

Access Control Model
Matrix and protection states
Access control lists and capability model

Role Based Access Control
Definitions and components
Reference Model
Policy composition

NISTIRS
Policy Ontology
Implementing AC policy

XACML
NISTIRS Access Control System Metrics and assigning responsibility

Terminology
Metrics by type

Definition
A state of access control is said to be safe if no permission can be leaked
to an unauthorized or uninvited individual

• Access control systems come with a wide variety of features and
administrative capabilities

• Security models are formal presentations of the security policy enforced
by the access control system and are useful for proving theoretical
limitations of a system

Access Control

Types of Access Control Polices
• Discretionary Access Control (DAC, IBAC)

– individual user sets access control mechanisms to allow or deny access to an object
– Based on identity of subject and object involved
– e.g. Diary

• Mandatory Access Control (MAC)
– system controls access to objects and individual cannot alter that access
– e.g. public court information, military systems

• Originator Controlled Access Control (ORCON)
– originator (creator) of information controls who can access and disseminate information, not the owner
– e.g. NDAs on code changes, licensing agreements

• Role Based Access Control (RBAC)
– access control decisions based on the a user’s role in an Organization
– Roles may be expressed hierarchically
– Can implement DAC and MAC

• Attributed Based Access Control
– logical access control based on collections of attributes of objects and users
– authorization to perform a set of operations is determined by evaluating attributes associated with the subject, object,

requested operations, and environment conditions against policy, rules, or relationships that describe the allowable operations
for a given set of attributes

• Others exist that are domain specific or are used for solutions to specific access problem

Access Control

Access Control Models
• Regulate the logical access to information with the system
• Maintained by a collection of policies and enforcement mechanisms
• 4 processes that build on each other:

– identification: Obtain the identity of the entity requesting access
– authentication: Confirm the identity of the entity
– authorization: Determine which actions the entity can perform
– accountability: Document the activities of the entity and system

• Built on principles for
– Least privilege – minimum access required for duties
– Need to know – specific data at specific times
– Separation of duties – segregating access responsibilities to limit powers

Access Control

Definition
Access control lists, matrices, and capability tables are formal mechanisms that
govern the rights and privileges of users

– Can control access to file storage systems, object brokers, or other network
communications devices.

A capability table specifies which subjects and objects that users or groups
can access

– Often considered user profiles or user policies
– Can take the form of complex matrices

Access Control

Access Control Tables
• Restrict access according to user, time, duration, and file to regulate the following

– Who can use the system
– What authorized users can access in the system
– Where authorized users can access the system from
– When authorized users can access the system
– How authorized users can access the system

• Administrators assign user privileges as rights
• Rights can include

– Generic access (read, write, execute)
– Domain specific
– Functions that determine rights given the current state or historical access or states
– Functions that determine rights given other current rights

Access Control

Access Control Matrix
• Tool to describe current protection state

– Privileges possessed by subjects (active entity) with respect to other entities
• State transitions change elements of matrix

– Matrix evolves by the autonomous activities of the subjects
• The set of protection states of the system is represented by the triple (S, O, A)

where S is the set of Subjects, O is the set of Objects, and A is the matrix of rights
– Relies on an authorization scheme

• Rules that direct how the protection state can be changed

Access Control

Access Control Matrix as an Abstract Model of the Protection State

Objects (O)

Su
bj

ec
ts

 (S
)

o1 … om s1 … sn

s1

s2

…

sn

Matrix A

• Subjects S = { s1,…,sn }
• each are subjects and objects that own themselves

• Objects O = { o1,…,om }
– Could be devices, processes, messages, systems
– Subjects are objects (active) but not vice versa

• Rights R = { r1,…,rk }
– r (read), w (write), x (execute), a (append), o (own)
– meaning of a right may vary depending on the object involved

• Entries A[si, oj] Í R
• A[si, oj] = { rx, …, ry } means subject si has

rights rx, …, ry over object oj

Access Control
can think of R in terms of reachability as well (a different R, from before)

Access Control by Boolean Expression Evaluation

• ACM controls access to objects
– Objects are records and fields
– Subjects are authorized users with attributes
– Verbs define type of access (rights)
– Rules associated with objects, verb pair

• Subject attempts to access object
– Rule for object, verb evaluated, grants or denies access

Access Control

Example

• Subject (s) Abe
– role (clerk), group (courthouse)

• Verb (activity) sign
– Default: Deny

• Object tax-doc
– Access Rule for tax-doc

sign: ‘clerk’ in s.role and
‘courthouse’ in s.group and
0800 £ hour £ 1700 and
“Monday” £ day £ “Friday”

Activity Default
Access

Read Granted

Write Deny

Sign Deny

Access Control

maps to policy:
∀s ∈ Subjects, t ∈ Times, d ∈ Days,
sign(s)ó(role(s) = clerk) Ù (0800 £ t £ 1700) Ù d ∈ {M, T, W, Th, F}

Access Control Matrix for Abe

• Protection state changes according to hour and day
… tax_doc …

…

Abe read

…

… tax_doc …

…

Abe read,
sign

…
… tax_doc …

…

Abe read

…

• At 1am on Monday

• At 3pm on Wednesday

• At 3pm on Saturday

Access Control

State Transitions
• Change the protection state of system –

– X0 = (S0, O0, A0) be the initial state
– T = [t1, t2 , …] commands

• Commands are transformation procedures that follow the authorization scheme
• Change the triple

– Alter subject or object set based on t
– Change entries in the access control matrix rights

• Use parameters to state how the change is made
• Given the initial state and the authorization scheme, it is a formal process to

characterize all of the protection states that are reachable

Access Control

Primitive Commands, t
• To maintain proper logical values for pre- and post-conditions

– Protection before state: (S,O,A)
– Protection after state: (S¢, O ¢, A ¢)

• create subject s
– Creates new row and column in ACM, but does not alter rights
– Precondition (subject does not exist) : s Ï S
– Postconditions:

S¢ = S È{ s } Ù [subject exists]
O¢ = O È{ s } Ù [subject object exists]
("y Î O)[A¢[s, y] = Æ] Ù [initialize access to all objects to null, i.e. deny]
("x Î S)[A¢[x, s] = Æ] Ù [ensure no other subject has access to the new subject object]
a¢[s, s] = {“own”} Ù [establish ownership of self]
("x Î S)("y Î O)[A¢[x, y] = A[x, y]] [everything else stays the same as it was before]

• subject s creates object o
– Creates new column in ACM and assigns ownership to subject s

• destroy subject s
– Deletes row, column from ACM

• destroy object o
– Deletes column from ACM

Access Control

Sample Command Logic
• Allows for provability
• enter r into A[s, o]

– Adds r rights for subject s over object o
– Precondition: s Î S, o Î O
– Postconditions:

S¢ = S Ù O¢ = O Ù
A¢[s, o] = A[s, o] È { r } Ù
("x Î S¢)("y Î O¢ – { o }) [A¢[x, y] = A[x, y]] Ù
("x Î S¢ – { s })("y Î O¢) [A¢[x, y] = A[x, y]]

• delete r from A[s, o]
– Removes r rights from subject s over object o

• Make subject p the owner of file g
command make-owner(p, g)

enter own into A[p, g];
end

• Conditional commands
– Let p give q r and w rights over f, if p owns f and p has copy (c) rights over q

command grant-read-file(p, f, q)
if own in A[p, f] and c in A[p, q]
then

enter r into A[q, f];
enter w into A[q, f];

end Access Control

Copying Rights
• Allows possessor to give rights to another
• Often attached to only the applicable right

– r is read right that cannot be copied
– rc is read right that can be copied

• Depending on the model, the copy flag may copied when giving r
rights

Access Control

Owning Rights
• Usually the possessor (owner) can change entries in ACM column

by adding and deleting rights for others with respect to that
object
– May depend on what system allows

• Can’t give rights to specific (set of) users
• Can’t pass copy flag to specific (set of) users

Principle: Attenuation of Privilege
• says you can’t give rights you do not possess

– Restricts addition of rights within a system

– Usually ignored for owner since owner gives self rights, gives
them to others, deletes self rights.

Access Control

Two Approaches
• ACL – Access Control List for specifying object access
• Capability Lists - for specifying subject capabilities

Access Control

Access Control Lists

• Uses the columns of access control matrix
• ACLs:

– Obj1: { (Allen, rwxo) (Bea, rx) (Cody, rx) }
– Obj2: { (Allen, r) (Bea, rwo) (Cody, r) }
– Obj3: { (Allen, rw) (Cody, rwo) }

• The normal use is if not named, no
rights over file
– Based on Principle of Fail-Safe Defaults
– Extended to composed policies

Obj1 Obj2 Obj3

Allen rwxo r rw

Bea rx rwo

Cody rx r rwo

Access Control

ACL Usage
• Who can modify the ACL?

– Creator is given own right for modification
– Can be a something available like a copy flag that allows a right to be

transferred, so ownership not needed
• ACL application to privileged users varies across vendors and with respect

to abbreviated or full blown entries
• Denying access

– If ACL entry denies user access, then deny access
– If the user is not in file’s ACL nor in any group named in file’s ACL then deny

access
– If there are conflicts, the norm is to deny access if any entry denies access

Access Control

Capability Lists
• Rows of access control matrix
• C-Lists:

– Allen: { (Obj1, rwxo) (Obj2, r) (Obj3, rw) }
– Bea: { (Obj1, rx) (Obj2, rwo) }
– Cody : { (Obj1, rx) (Obj2, r) (Obj3, rwo) }

Access Control

ACLs vs. Capabilities
• Theoretically equivalent

1. Given a subject, what objects can it access, and how? (answered by C-Lists)
2. Given an object, what subjects can access it, and how? (answered by ACLs)

• Second question has in past been of most interest making ACL-based emerge as
more common

• First question becomes more important for incident response

Access Control

Exercise

• Formally write the state changes required for the
primitive command: subject s creates object o

Access Control

Looking at RBAC in particular

content (c) Rose Gamble 2012-2014
modified by M. Hale 2015

Role-Based Access Control
• Access control model specified in terms of roles and role hierarchies, role

activation, and constraints on user/role membership and role set
activation

• Ease of Role Change
• Allison, bookkeeper for Math Dept, has access to financial records.
• She leaves.
• Betty hired as the new bookkeeper, so she

now has access to those records
• The role of “bookkeeper” dictates access,

not the identity of the individual
• Role Containment

– Trainer can do all transactions that
trainee can do (and then some).
This means role r can contain
another role r¢ where r dominates
r¢.

NurseDoctor

Medical Staff

PamDr. X

RBAC

Role-Based Access Control (ANSI INCITS 359-2004)

• Users
– humans but can be extended to generic subjects

• Objects
• Operations

– program, which upon invocation executes a function for a user
• Permissions

– approval to perform an operation on one or more RBAC protected objects
• Role

– job function within the context of an organization with some associated
semantics regarding the authority and responsibility conferred on the user
assigned to the role

RBAC

RBAC Reference Model – 4 Model Components
• Core RBAC

• Minimum collection of RBAC elements
• User-role and permission-role assignment relations
• Role activation as part of a user’s session
• Required in any RBAC system

• Hierarchical RBAC
• Adds role hierarchies as a partial order of seniority among roles
• Role has a set of authorized users and authorized permissions

• Static Separation of Duty Relations (SSD)
• Adds relations among roles with respect to user assignments
• Defines relations both in the presence and absence of role hierarchies

• Dynamic Separation of Duty Relations (DSD)
• Defines exclusivity relations with respect to roles when activated as part of a user’s session

RBAC

Reference Model

RBAC

Example Policy Composition and Temporal Properties

r1A

r2A

r3A
r4A

u1

SO
D

SOD

W-Th

u2

Domain A

r3B

r1B

r2B

u4

u3

 Only 2 Users
 can access
 simultaneously

r5A

Domain B

T-W

M-F

M-Th

T-W u5

W-F

F

M, W, Th, F = week days

RBAC

Definitions for Example

RBAC

Let A and B be two different domains (e.g. two systems or organizations)
Let U be the set of all users {u1…un} who have access to a system at any given time
Let R be the set of roles in a given system/organization X {r1X…rnX} where X is A or B

Let directed lines between roles denote role mappings (bold for inter-domain)
Let directed lines between users to roles denote role assignment of a given ui to a role

Example Policy Composition and Temporal Properties

r1A

r2A

r3A
r4A

u1

SO
D

SOD

W-Th

u2

Domain A

r3B

r1B

r2B

u4

u3

 Only 2 Users
 can access
 simultaneously

r5A

Domain B

T-W

M-F

M-Th

T-W u5

W-F

F

M, W, Th, F = week days

RBAC

Example Policy Composition and Temporal Properties

r1A

r2A

r3A
r4A

u1

SO
D

SOD

W-Th

u2

Domain A

r3B

r1B

r2B

u4

u3

 Only 2 Users
 can access
 simultaneously

r5A

Domain B

T-W

M-F

M-Th

T-W u5

W-F

F

M, W, Th, F = week days

Violates separation of duty
of u1

RBAC

Example Policy Composition and Temporal Properties

r1A

r2A

r3A
r4A

u1

SO
D

SOD

W-Th

u2

Domain A

r3B

r1B

r2B

u4

u3

 Only 2 Users
 can access
 simultaneously

r5A

Domain B

T-W

M-F

M-Th

T-W u5

W-F

F

M, W, Th, F = week days
Violates T-W access restriction
for r1B

RBAC

Example Policy Composition and Temporal Properties

r1A

r2A

r3A
r4A

u1

SO
D

SOD

W-Th

u2

Domain A

r3B

r1B

r2B

u4

u3

 Only 2 Users
 can access
 simultaneously

r5A

Domain B

T-W

M-F

M-Th

T-W u5

W-F

F

M, W, Th, F = week days

r1A, r1B, and r2B can access on W
violating # constraint RBAC

NISTIRS

Looking at NISTIRS, XACML, and metrics

content (c) NIST 2012, Rose Gamble 2012-2014, and/or M. Hale 2015,

Implement Policy Monitoring / Audit

NISTIRS (Interagency Reports)
Another tool in your toolbag

• Describe research or technical information related to information
security produced by NIST

• Typically focus on security topics at a much greater level of detail
than seen in the SP 800-53 or FIPS series documents

• Are best used in combination with other things like security controls.
• 7874 – focuses on

“Guidelines for Access Control System Evaluation Metrics”

NIST IRShttp://csrc.nist.gov/publications/PubsNISTIRs.html

AC System is initiated here

Indirect association

Direct association

NIST IRshttp://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7874.pdf

Definitions in NIST IR 7874

RBAC

AC Policies are high level requirements that specify how access is managed and who, under
what circumstances, may access what information. To enforce policies, organizations are
required to codify their internal privacy and security policies into machine-enforceable
algorithms or AC policy languages to govern the exchange of data within their organizations.

AC Models are formal presentations of the security policies enforced by AC systems, and are
useful for proving theoretical limitations of systems. AC models bridge the rather wide gap in
abstraction between policy and mechanism

AC Mechanisms provide a way to enforce AC policies by translating a user’s access request
into terms of a system provided structure (e.g. Access control matrix). Access control
mechanisms can be designed to adhere to the properties of the model by machine
implementation using protocols, architecture, or formal languages such as program code.

Policy Ontology

NIST IRs

onto- comes from the Greek ὤν, ὄντος
meaning “being” / “that which is”
-logy from Greek –λογία meaning

“the character of one who speaks of a
certain subject” (branch of knowledge)

Policy Ontology

NIST IRs

NIST IRs

Policy Ontology

NIST IRs

Policy Ontology

XACML
• An authorization-related standard created by the

Organization for the Advancement of Structured
Information Standards (OASIS)

• XML-based general-purpose language used to describe
policies, requests, and responses for AC policies
– Input: policies, request
– Output: permit, deny, not applicable, indeterminate
– Flexible and system-independent representation of access rules

that vary in granularities
• Five basic elements of XACML policies

– PolicySet - a container that holds other policies or policy sets
– Policy - policy is expressed through a set of rules
– Rule – implement authorization logic using a target, condition,

and effect
– Target – subjects, resources and actions that a rule applies to
– Condition – applies restrictions to the target attributes and refines

rule applicability

XACMLSee docs at: http://www.datypic.com/sc/xacml/ss.html

XACML Architecture
• Policy Decision Point (PDP): Makes the access decisions by evaluating the applicable policy. PDP implements the decision

procedures according to the XACML specification.
• Policy Administration Point (PAP): Provides a user interface for creating, testing, and debugging XACML policies, and storing

these policies in the appropriate repository.
• Policy Enforcement Point (PEP): Performs AC by instantiating and enforcing authorization decisions made by the PDP
• Policy Information Point (PIP): Serves as the source of attribute values, or the data required for policy evaluation to provide the

information needed by the PDP to make the decisions.
• Policy Retrieval Point (PRP): Where the policies are stored and fetched by the PDP.

XACMLSee docs at: http://www.datypic.com/sc/xacml/ss.html

XACML Policy Example
<Policy PolicyId="ExamplePolicy"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">
<Description>A policy to specify read privileges on a document called “some-document.pdf ”</Description>
<Target>

<Resources>
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">some-document.pdf</AttributeValue>
<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>
</Resource>
</Resources>

</Target>
<Rule RuleId="ReadRule" Effect="Permit">

…
</Rule>

</Policy>

See docs at: http://www.datypic.com/sc/xacml/ss.html

XACML Policy Example<Rule RuleId="ReadRule" Effect="Permit">
<Description> Matt can perform reads</Description>

<Target>
<Actions>

<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">read</AttributeValue>
<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string”
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch>
</Action>

</Actions>
</Target>
<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string” >

urn:oasis:names:tc:xacml:1.0:subject:subject-id
</SubjectAttributeDesignator>
<AttributeValue DataType = “http://www.w3.org/2001/XMLSchema#string”>Matt</AttributeValue>

</Apply>
</Condition>

</Rule> See docs at: http://www.datypic.com/sc/xacml/ss.html

XACML Request Structure

Request

Subject
Attributes

Action
Attributes

Environment
Attributes

Resource
Attributes

credit:
www.cs.odu.edu/~mukka/cs795sum14.net/Lecturenotes/day7/xacmltutorial.ppt

x

Request Example
<Request>

<Subject>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType=" http://www.w3.org/2001/XMLSchema#string ">
Matt

</Attribute>
</Subject>
<Resource>

<Attribute AttributeId = "urn:oasis:names:tc:xacml:1.0:resource:resource-id“
DataType="http://www.w3.org/2001/XMLSchema#string">some-document.pdf</AttributeValue>

some-document.pdf
</Attribute>

</Resource>
<Action>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string">

read
</Attribute>

</Action>
</Request>

See docs at: http://www.datypic.com/sc/xacml/ss.html

XACML Response Structure

Response

Decision ObligationsStatus

credit:
www.cs.odu.edu/~mukka/cs795sum14.net/Lecturenotes/day7/xacmltutorial.ppt

x

XACML Response Example
<Response>

<Result>
<Decision>Permit</Decision>
<Status>

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>
</Status>

</Result>
</Response>

Effect:
Permit/Deny/Not Applicable/Indeterminate

See docs at: http://www.datypic.com/sc/xacml/ss.html

XACML: Benefits/Drawbacks
• Benefits:

– Allows for combining policies for different authoritative domains into one policy set for making AC
decisions in a widely distributed system environment.

– Reconcile conflicting rules using a collection of combining algorithms Flexible and highly
expressive

– Clear and interchangeable once created
– system independent

• Drawbacks:
– extremely verbose – making simple rules many lines long
– makes first order logic look easy
– heavy handed for small policy applications

• Its just one tool in the shed – not the only one!

XACML

NISTIRS

Now that you know what XACML is:
Looking back at the NISTIRS

7874 Defines Responsible Principals

• Organization CIO (Chief Information Officer) (OC): oversee the
establishment of information systems from the cost, service, and security
perspectives of the organization’s policy

• AC policy authors (PA): define or design security policies for the organization’s
information system according to business practices and security requirements

• AC system implementers (SI): install, configure and/or implement the AC
system in accordance with the PA’s design

• AC system administrators, (operators, or maintainers) (SA): facilitate building,
networking, deploying, administrating, and maintaining the AC system

• Authentication system managers (ASM): responsible for connecting
authentication or other service functions for the AC system

• AC system users (SU): access information through the AC system

NIST IRs: Metrics

…and Properties for Quality Metrics of Access Control Systems
• Categories

– Administration properties impact the cost, efficiency, and performance of an AC system’s
administration

– Enforcement properties relate to the mechanisms or algorithms that the AC system uses to enforce the
embedded AC models and rules - affect the efficiency of rendering AC decisions

– Performance properties are in addition to the enforcement of the AC system’s processes
– Support properties may not be essential but can increase the usability and portability of an AC system

• Criticality
– Questions from the metric items should match the organization’s requirements for the AC system.
– Selected AC metric items are categorized as

• Critical - are necessary for the system
• Optional - desirable but not essential (e.g., improve performance)
• Supplemental - will not affect the normal AC operation, but might be required for extension or future services.

NIST IRs: Metrics

Administration Properties
• Auditing
• Privileges/capabilities discovery
• Ease of privilege assignments
• Syntactic and semantic support for specifying AC rules
• Policy management
• Delegation of administrative capabilities
• Flexibilities of configuration into existing systems
• The horizontal scope (across platforms and applications) of control
• The vertical scope (between application, DBMS, and OS) of control

NIST IRs: Metrics

Administration – Function: Auditing
• Organization CIO (OC): oversee the establishment of information systems from

the cost, service, and security perspectives of the organization’s policy
• AC system administrators (SA): facilitate building, networking, deploying,

administrating, maintaining the AC system
• Policy Enforcement Point (PEP): Performs AC by making decision requests

made by the PDP and enforcing authorization decisions.

NIST IRs: Metrics

Enforcement Properties
• Policy combination, composition, and constraint
• Bypass
• Separation of Duty (SoD)
• Safety (confinements and constraints)
• Conflict resolution or prevention
• Operational/situational awareness
• Granularity of control
• Expression (policy/model) properties
• Adaptable to the implementation and evolution of AC policies

NIST IRs: Metrics

Enforcement – Function: Conflict Resolution/Prevention
• AC policy authors (PA): define or design security policies for the organization’s information

system according to business practices and security requirements
• AC system implementers (SI): install, configure and/or implement the AC system in accordance

with the PA’s design
• Policy Administration Point (PAP): Provides a user interface for creating, testing, and debugging

XACML policies, and storing these policies in the appropriate repository.

NIST IRs: Metrics

Performance Properties
• Response time
• Policy repository and retrieval
• Policy distribution
• Integrated with authentication function

NIST IRs: Metrics

Performance – Function: Policy Repository & Retrieval

• Organization CIO (OC): oversee the establishment of information
systems from the cost, service, and security perspectives of the
organization’s policy
• AC system administrators (SA): facilitate building, networking,

deploying, administrating, maintaining the AC system
• Authentication system managers (ASM): responsible for connecting

authentication or other service functions for the AC system

• Policy Administration Point (PAP): Provides a user interface for creating, testing,
and debugging XACML policies, and storing these policies in the appropriate
repository.
• Policy Information Point (PIP): Serves as the source of attribute values, or the data

required for policy evaluation to provide the information needed by the PDP to make
the decisions.
• Policy Retrieval Point (PRP): Where the policies are stored and fetched by the

PDP.

NIST IRs: Metrics

Support Properties
• Policy import and export
• OS compatibility
• Policy source management
• User interfaces and API
• Verification and compliance function support

NIST IRs: Metrics

Support –Function: Policy Source Management
• Policy Administration Point (PAP): Provides a user interface for creating,

testing, and debugging XACML policies, and storing these policies in the
appropriate repository.
• Policy Information Point (PIP): Serves as the source of attribute values, or

the data required for policy evaluation to provide the information needed by
the PDP to make the decisions.

• AC system implementers (SI): install, configure and/or implement the AC
system in accordance with the PA’s design
• AC system administrators (SA): facilitate building, networking, deploying,

administrating, maintaining the AC system
• Authentication system managers (ASM): responsible for connecting

authentication or other service functions for the AC system

NIST IRs: Metrics

N
e
x
t

T
i

m
e

XACML Exercise

T
h
e
n

Security Training, Awareness, and Social engineering

Security Training
and Awareness

H
o
m
e
w
o
r
k

Read (i.e. glance) at the NISTIR 7874
http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7874.pdf

http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7874.pdf

Questions?

Matt Hale, PhD
University of Nebraska at Omaha

Interdisciplinary Informatics
mlhale@unomaha.edu

Twitter: @mlhale_

All else © 2014-2018 Matthew L. Hale or as listed
Some material © 2015 Rose Gamble – University of Tulsa

