
Intro to Serverside API Development Using Django
Building a Fortress in a greenfield

Dr. Hale
University of Nebraska at Omaha
Secure Web Application Development – Lecture 3

Today’s topics:

Server-client
Architecture and dataflow
Network Perspective (overview)
Attack Vectors: Types and where they occur

Django overview
Intro to Django
Your application architecture
Building an API

Server Client
Architecture

Client

Server

send

receive
N
G
I
N
X

Django
Application

mod_wsgi

Database
Server

URL Dispatcher

Views Layer

Models

Templatesmod_wsgi

FileSystem/OS

send

matched

data?
renderreceive

Ember
App

Server Client
Network Perspective

Client

HTTP Request
GET/POST/

PUT/DELETE

HTTP
Response N

G
I
N
X

Application

Database
Server

FileSystem/OS

(LAN)
TCP or
UDP

Ember
App

Server-client
Attack Vectors

Client

HTTP Request
GET/POST/

PUT/DELETE

HTTP
Response N

G
I
N
X

Application

Database
Server

FileSystem/OS

(LAN)
TCP or
UDP

Denial of Service (DoS/DDoS)
Session Attacks

DB Injection

Privilege Escalation

Command Execution

File Disclosure

XSS Attacks

Ember
App

Server-client
Attack Vectors

We will talk more about defending against these attacks
moving forward and you will mitigate them by
hardening the API (later) and apache (next)

W
e
b

S
e
r
v
e
r
s

Apache / Nginx
We will come back to this

Apache/ NGINX is just the http server.
What about the web framework?

Enter: Django

• A high-level web framework
• Automates key web development patterns
• Provides an infrastructure so you can focus on keeping code clean and

efficient
• Model-View-Controller pattern, keep it separate!

– Model (describes database table)
– Views (handles exchange between user and database, business logic, bad

name – these are actually the controllers in django)
– URLs (map a URL pattern to particular view, similar to an ember route)
– Templates (specifies presentation format, these are basically the ‘view’

layer)

Django: Models

• Model ó Database Table
• Model Instance ó Database Record
• Database-abstraction API via object-relational mapping (ORM)
• Helps avoid boilerplate database code

– e.g. MySQLdb.connect(params=values)

See django model documentation:
https://docs.djangoproject.com/en/1.9/topics/db/models/

https://docs.djangoproject.com/en/1.9/topics/db/models/

Django: Views (remember these are controllers)

• A simple View:

• An alternate view, utilizing the Django template system:

See django view documentation:
https://docs.djangoproject.com/en/1.9/topics/http/views/

https://docs.djangoproject.com/en/1.9/topics/http/views/

Django: Views and simple queries

• Accessing an object and raising a 404 if it doesn’t exist

• Uses some model named “Poll” using the “get” query with a primary key “pk”
= poll_id
– Note: “get” returns one item, use “filter” for sets of items

• Where does poll_id come from? - urls

See django view documentation:
https://docs.djangoproject.com/en/1.9/topics/http/views/

https://docs.djangoproject.com/en/1.9/topics/http/views/

Django: URLconf
• The ‘Table of Contents’ of your web site

– Mapping between URL patterns and view functions to handle URLs
• Regular expressions used to specify patterns (don’t be afraid if you don’t

know regex though)

See django url documentation:
https://docs.djangoproject.com/en/1.9/topics/http/urls/

https://docs.djangoproject.com/en/1.9/topics/http/urls/

Django: The poll detail example

• A request comes in for URL
/app_name/polls/detail/12

• Search URLconf for pattern
• Match second pattern, send to app_name.views.detail view function
• Passes HttpRequest object and poll_id represented by one or more

digits
• View performs business logic and returns an HttpResponse object

That’s great! But what does a template look like?

• Templates
– Placeholder variables
– Basic logic (template tags)
– Formatting variables (filters)

See django template documentation:
https://docs.djangoproject.com/en/1.9/topics/templates/

https://docs.djangoproject.com/en/1.9/topics/templates/

Since your apps are built in the client-side (ember) you are just using
the API (next) – so you probably wont need django templates

Django: Bonus

• Admin interface
• Django Packages: Reusable apps, tools and more

– If you can think of something its probably already been done
– Use and re-use libraries – don’t reinvent the wheel if you don’t need to
– Very similar community to Ember addons

(but actually even more mature)

http://djangopackages.com/

Building a REST API in Django

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

Django REST Framework

• Serializers
• Views / class-based views / viewsets
• router, simple urls
• multiple methods GET/POST/PUT/DELETE
• auto-documenting browseable API in markdown
• clear separation of code

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

Serializer
• map to a model or data type
• automagically serialize python data

to JSON
• specify what fields to use and any

more advanced features
• can use pre-built components or

write your own

More info: http://www.django-rest-framework.org/api-guide/serializers

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

Simple
function-based
views
• lowest level

way to dictate
an API call

• highest
amount of
code

• more prone to
errors

• use only if you
need to
provide very
specific
functionality

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

Class-based views
• higher level way to dictate an API call
• better way to group requests
• Still requires effort to create each handler

More info: http://www.django-rest-framework.org/api-guide/views

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

Viewsets
• very high level way of dictating API calls
• DRF Automagically generates multiple views that map to GET,POST, etc
• can still be overridden
• This is the “quick and easy” way to get an API up, but you have less control

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

More on Viewsets
• queryset map to a set of database models
• creates views to handle GET/POST/ETC requests to /contentitems/ and

/contentitems/<pk>
• serializer_class parses the data for the related views
• can specify new methods as function e.g. def foo on in a viewset to handle special cases or

perform functions like /contentitems/<pk>/foo
• can override base views using list, create, retrieve, update, partial_update, and destroy

keywords these map to HTTP methods

More info: http://www.django-rest-framework.org/api-guide/viewsets

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

Wiring the API
with URLs
• Viewsets

• Can be
customized

• Use router for
connecting viewsets
to urls

• Can use view
mapping for class-
based views

• Can use basic
URLs for function-
based views

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

Wiring the API with URLs: Using the Router
• prefix is specified in the .register call.
• E.g. router.register(r'contentitems', views.ContentItemViewSet)
• methodname is a custom method detailed in the viewset
• lookup is the primary key or other unique field that identifies one instance

More info: http://www.django-rest-framework.org/api-guide/routers

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

Auto-magical Documentation
• Whatever pydocs comments you make are translated using markdown into HTML

automagically

D
j
a
n
g
o

R
E
S
T

F
r
a
m
e
w
o
r
k

Self Documenting Browsable API
• use detail_route() for individual items
• use list_route() for all items

Questions?

Matt Hale, PhD
University of Nebraska at Omaha

Interdisciplinary Informatics
mlhale@unomaha.edu

Twitter: @mlhale_

© 2015-2018 Matthew L. Hale

