
Test Driven Development
Building a fortress in a greenfield (or fortifying an existing one)

Dr. Hale
University of Nebraska at Omaha

Today’s topics:
Software Testing and Test driven development

Unit / integration / acceptance testing
Think-test-build-test-repeat

Blackbox and Whitebox testing
Vulnerability surface and testing strategies

Test-driven Development
Some Material from Bernd Bruegge and Allen Dutoit Object-Oriented SE: Using UML, Patterns, and
Java
(because their slides are hilarious)

• F-16 : crossing equator using autopilot
– Result: plane flipped over
– Reason?

• Reuse of autopilot
software

• The Therac-25 accidents (1985-1987), one of the most serious non-military computer-related failure
in terms of human life (at least five died)
– Reason: Bad event handling in the GUI

• NASA Mars Climate Orbiter destroyed due to incorrect orbit insertion (September 23, 1999)
– Reason: Unit conversion problem.

Famous Problems

Terminology

• Failure: Any deviation of the observed behavior from the
specified behavior

• Erroneous state (error): The system is in a state such that
further processing by the system can lead to a failure

• Fault: The mechanical or algorithmic cause of an error (“bug”)
• Validation/testing: Activity of checking for deviations between

the observed behavior of a system and its specification.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

What is this?

A failure?

An error?

A fault?

We need to describe specified
and desired behavior first!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Erroneous State (“Error”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Algorithmic Fault

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Mechanical Fault

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

F-16 Bug

• What is the failure?
• What is the error?
• What is the fault?

• Bad use of implementation
inheritance

• A Plane is not a rocket.

Rocket

Plane

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

How do we deal with Errors, Failures
and Faults?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Patching

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Building Modular Redundancy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Declaring the Bug
as a Feature

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Another View on How to Deal with Faults

• Fault avoidance
• Use methodology to reduce complexity
• Use configuration management to prevent inconsistency
• Apply verification to prevent algorithmic faults
• Use Reviews

• Fault detection
• Testing: Activity to provoke failures in a planned way
• Debugging: Find and remove the cause (Faults) of an

observed failure
• Monitoring: Collecting and Delivering information about

state => Used during debugging
• Fault tolerance

• Exception handling
• Modular redundancy.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Taxonomy for Fault Handling Techniques

Fault Handling

Fault
Avoidance

Fault
Detection

Fault
Tolerance

Verification

Configuration
ManagementMethodoloy Atomic

Transactions
Modular

Redundancy

System
Testing

Integration
Testing

Unit
Testing

Testing Debugging

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Observations

• It is impossible to completely test any nontrivial module or
system
• Practical limitations: Complete testing is prohibitive in time and cost
• Theoretical limitations: e.g. Halting problem

• “Testing can only show the presence of bugs, not their absence”
(Dijkstra).

• Testing is not for free

=> Define your goals and priorities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Testing Activities

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

Requirements
Analysis

Document

Client
Expectation

System
Design

Document

Object
Design

Document

Developer Client

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

Types of Testing

Acceptance Test – A measure that ensures that a feature meets
functional demands. Usually acceptance tests are tied to user stories
or use cases.

Unit test – A smaller test that ensures isolated chunks of
functionality (known as units) are functional and operating as
expected.

Integration tests – Between unit tests and acceptance tests. Focuses
on ensuring that different units function together (said to be
integrable).

UNIT Testing
Can be done manually or programmatically – want to define them
programmatically since your components may change and manually
testing each time is onerous

Basically you boil down exactly what a feature or component should
be doing and you logically state these criteria. Each time you modify
the feature/component you run the unit tests to see if they pass.
When they all pass you move on to integration tests.

Integration Testing
Can be done manually or programmatically

Here you define how different components need to interact and state
those constraints logically. When all of the integration tests work – it
means you move on to acceptance tests and make sure the collected
components satisfy the original goals in the user story or use cases.

Acceptance Testing
Can be done manually or programmatically – often the former

You basically define the set of all acceptance tests related to your
user stories and use cases and – when you demonstrate the app
passes all of the tests you are done!

Penetration Testing
Pen tests are either unit or integration tests. Most are unit tests. They
are integration if they involve evoking multiple separable
components at once. A pen test seeks to identify failure conditions
that violate security requirements by causing errors. The goal is to
identify and mitigate faults that lead to these errors, through
patching.

Test Driven Development
Core Philosophy

Blackbox and Whitebox testing

Blackbox Testing
Testing a component, feature, or system without knowledge of the inner
workings of the entity.

Whitebox Testing
Testing a component, feature, or system with knowledge of the inner
workings of the entity.

Same basic idea:
Understand what can go wrong so you can mitigate the problem or
vulnerability.

Conducting an Evaluation

Suggested workflow for security evaluation

Identify Use cases Identify Misuse cases

Enumerate Test casesIdentify resources
available for testing

Conduct Test

no
Mitigate/Report

Pass?

Yes, no more cases

Yes, more cases

Identify Affected
Components

Conceptualizing testing strategies

Your app or the product
you are evaluating

Actual vulnerabilities Your tests

Takeaway:
Having coverage AND
Depth is important

Your app or the product
you are evaluating

Actual vulnerabilities Your tests

Apps can have internal
Component-to-component
Vulnerabilities too

Actual vulnerabilities Your tests

Takeaway2:
Important to test and mitigate issues with
internal components

Actual vulnerabilities Your tests

Takeaway3:
Impossible to have full coverage
Try to prioritize by risk factors

Actual vulnerabilities Your tests

Real bad

Kinda bad

Not so bad

Questions?

Matt Hale, PhD
University of Nebraska at Omaha

Assistant Professor of Cybersecurity
faculty.ist.unomaha.edu/mhale/

mlhale@unomaha.edu
Twitter: @mlhale_

© 2016-2017 Matthew L. Hale

